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难题1：高效支持批处理可编程自举的全同态加密算法

技术背景
• 数据安全面临挑战，需要既能发挥数据价值、又能保护数据隐私的新型技术和基础设施；
• 全同态加密是隐私计算技术很重要的一个分支，可以实现数据可用、可控、不可见；
• 目前全同态加密的性能还不足，密文计算比明文慢几万到百万倍，但通过硬件加速的潜力较大；
• 第二代、第三代全同态加密方案都存在“偏科”现象，各有擅长和不擅长的计算类型，存在改进空间。

第二代：层次型
• 优势：支持加法、乘法、批处理，密文/明文尺寸

膨胀率较低

• 局限性：不支持非线性运算，自举效率慢，必须
一次性打包上万个元素

• 延迟因子：在不同场景下差异巨大：100~10亿

第三代：高性能自举

• 优势：支持加法、数乘、非线性运算

• 局限性：不支持批处理、能支持的非线性函数尺寸
有限、密文/和密钥尺寸太大，硬件加速时数据搬运
开销过大

• 延迟因子：在不同场景下差异很小：10万左右

方案 算术运算 非线性运算 批处理 自举效率 硬件加速

第二代 √ × √ × √

第三代 × √ × √ ×

技术挑战

技术诉求

[1] TFHE: Fast Fully Homomorphic Encryption over the Torus.
[2] Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks
[3] Efficient Bootstrapping for Approximate Homomorphic Encryption with Non-Sparse Keys
[4] General Bootstrapping Approach for RLWE-based Homomorphic Encryption

• 第三代TFHE/PBS技术可实现13ms一次自举，自举的同时支
持可编程非线性计算，但其不支持批处理式的自举

• 第二代自举总体效率低效且不支持可编程，如CKKS方案批处
理自举一次需要18s，但其批处理的特性使得均摊下来单个元
素自举只需要5ms

• 最新研究尝试用三代的自举技术去加速二代自举，但本质上在
自举时仍需将二代密文提取成三代密文自举，时间复杂度高

设计高效支持批处理可编程自举的全同态加密算法，以同
时具备二、三代全同态加密算法的优势，均摊（总时长/
批处理数）效率达到10ms量级

方案 算术运算 非线性运算 批处理 自举效率 硬件加速

挑战
目标 √ √ √ √ -

（不作要求）

第二代
BGV,BFV,CKKS

平方级增长

计算时间

电路规模

第三代
TFHE→PBS
线性增长

复杂计算任务
（乘法深度较深）

简单计算任务

参考文献：

出题组织：可信理论、技术与工程实验室     接口专家： Liu Yamin/liuyamin3@huawei.com

当前结果

• 支持批处理可编程自举的全同态加密算法：当前可编程自举
方案只支持对单个消息的处理，如何利用批处理并行处理的
特性进一步提升效率是可编程自举走向实用化的核心难题
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难题2：面向版权确权场景的可公开鲁棒盲水印技术

技术挑战
技术诉求

• 水印算法的可公开性：水印算法公开的情况下，敌手可以针对算法的薄弱环节
进行攻击，水印的安全性面临挑战。

• 频域水印难以抵抗裁剪攻击：频域变换相当于对像素矩阵进行一系列矩阵运算，
在得到的矩阵中嵌入水印信息，再逆变换回像素矩阵，水印信息就分散的每一
个像素中了。裁剪攻击破坏了矩阵运算的运算规则，无法从被修改的内容中提
取水印。

• 空域抗裁剪水印鲁棒性低：空域水印的嵌入通常比较简单，通过增加水印的冗
余嵌入或者增加水印强度提高鲁棒性，但是在水印算法公开的前提下，即使增
加冗余嵌入，攻击者可以很容易从内容中将水印信息去除。同时，增加水印的
嵌入强度会导致对图像的观感产生影响。

当前结果

• 基于置乱的水印保护措施：在水印嵌入之前首先根据密钥对图像进行置乱，相
当于得到一个新的图像，在新的图像上进行水印嵌入，如果不知道置乱用的密
钥就不能得到水印。但是这种方式对于可能改变置乱映射的任何攻击都不具有
抵抗性，比如裁剪。

• 基于几何不变域的频域水印：Fourier-Mellin（DFT+LPM）变换得到的是旋转，
缩放，平移的不变域，即对图像做的这些操作，在这个域上只是坐标位置的变
化。尽管在归一化坐标条件下，可以抵抗一定程度的按原图比例的裁剪，但是
这种频域水印方法同样不能抵抗随意的裁剪攻击。

• 基于模板或周期嵌入：因为裁剪破坏的是图像的一部分，剩余部分是完好的，
因此部分水印算法在空域中周期性的嵌入相同的水印，保证在裁剪后还能够进
行完整水印信息提取，但是存在安全性和不可见性问题。

• 安全的可公开方案：版权确权场景，设计满足Kerckhoffs原则的水印方案。
• 抗裁剪能力：保证非几何攻击的鲁棒性前提下，能够在25%以上的任意裁剪攻

击下后，完成水印的提取。并且嵌入水印过程不能影响图像质量，PSNR(峰值
信噪比)>40dB 或 SSIM(结构相似性) >95%。

       水印技术是指在数字内容（如图像）中嵌入一些信息，在发生版权冲突时，
能够通过其中的水印，完成数字内容版权归属的确定。

技术背景

参考文献：
[1] Cryptanalysis and improvement of a chaos-based watermarking scheme, IEEE 
Access, 2019. 
[2] Efficient general print-scanning resilient data hiding based on uniform log-
polar mapping, 2010.
[3] Local geometric distortions resilient watermarking scheme based on 
symmetry. IEEE Transactions on Circuits and Systems for Video Technology, 2021. 

       为了保证水印确权的权威性，需要水印算法公开可验证，并且能够抵抗不
破坏图像价值前提下的攻击手段。对图像水印的攻击手段可以分为几何攻击和
非几何攻击。几何攻击包括裁剪，旋转，缩放，平移等改变图像尺寸的修改方
式，非几何攻击包括JPEG压缩，高斯模糊，滤波等调整像素值的修改方式。

出题组织：可信理论、技术与工程实验室    接口专家：周海波/zhouhaibo10@huawei.com
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难题3：如何高效解决安全多方计算合谋问题

安全多方计算是保护数据流动
的重要手段之一

如果计算方合谋数据将会被泄
露：由于安全多方计算是一个
分布式计算方式，各个计算方
掌握隐私数据的随机分片，如
果计算方合谋将会恢复原始数
据，尤其针对云服务场景，难
以自证清白，因此计算方法合
谋是在MPC部署场景需要考虑
的一个安全因素。

• 性能损耗较大：针对安全多方计算合谋问题，一般考虑的是主动安全模式（active 
security），即dishonest majority （t<n）, t是corrupt parties，n是总的计算方个数。
由于考虑到t个计算方被攻击者控制，同时还要保证MPC的正确性（correctness），公
平性（fairness），输入的独立性（independence of the inputs）及输出可交付性
（guaranteed output delivery）的特点，导致性能对比损耗较大（对比半诚实模型性
能相差~10+倍）。

技术问题

• 诉求和目标： 可以基于加速硬件，MPC协议，以及TEE等技术，在保障主动安全性的前
提下，利用硬件加速能力实现高效的多方计算功能，并能防止计算方合谋获取原始数据
（这里我们假设计算方不可信）；

• 应用场景： 密态AI训练和预测场景，针对数据集（cifar10，tiny imagenet，
imagenet）的深层CNN网络（VGG16，ResNET 50, ResNET 101, ResNET 152;）

• 性能指标：同等测试环境，对比半诚实（ semi-honest）的安全环境，性能损耗<50%
• 精度指标：对比明文AI训练及预测，精度损耗<2%;
• 交付件：算法及相应的形式化证明，PoC原型以及测试结果；

技术诉求

挑战：如何防止计算方合谋获取数据，实现自证清白，一直是业界一个难题

出题组织：可信理论、技术与工程实验室     接口专家：Yong Li/yong.li1@huawei.com

法规要求 :在保障个人数据
主权的前提下，促进数据
有序流动

产业需求：数据共享流通使数据产生价值，我司ICT，
CBU，CBG，IoV等产线有数据流通场景，研究一套
完善的安全数据流通解决方案是企业迫切需求

如 何 保 护 数
据流动过程，
实 现 数 据
“可用、 可
控 、 不 可
见”？

控制权与使用权分离带来数据安全的巨大挑战

参考文献：
[1] The round complexity of secure protocols (extended abstract). In 22nd ACM STOC
[2] Multiparty computation from somewhat homomorphic encryption. CRYPTO 2012
[3] The price of active security in cryptographic protocols. EUROCRYPT 2020

当前结果
• 主动安全算法协议：基于主动安全的算法协议（以BMR和SPDZ为代表），但是并不能

完全防止合谋攻击风险，并且性能损失很大；
• 依赖可信环境：利用可信硬件来执行多方分布式计算，但是需要和可信硬件强绑定和依

赖，同时由于可信硬件资源受限，性能也是瓶颈；
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难题4：低时延对称密码
出题组织：可信理论、技术与工程实验室     接口专家：Huang Tao/huangtao80@huawei.com

技术挑战

技术诉求

• 对于硬件场景专用的优化设计方法研究仍在相对早期的阶段，不够成熟：当前低时延算法对于硬件
场景专用的优化设计思路仍偏少，主要S盒、线性层等组件的优化，如何充分利用Permutation运算
硬件友好的性质或者是基于LRX结构设计低时延算法仍有待探索

• 针对具体低时延场景进行密码算法设计优化：在cache line加密的场景，单次读写数据量固定长度，
不同于通用的算法需要考虑支持各种长度的消息加解密。如何在算法设计上充分利用场景的特殊性
质值得进一步探索。

参考文献：
[1] Mofrad, Saeid & Zhang, Fengwei & Lu, Shiyong & Shi, Weidong. (2018). A comparison study of intel SGX and AMD memory 
encryption technology. HASP '18: Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security 
and Privacy. 
[2] Kounavis, Michael, Sergej Deutsch, Santosh Ghosh, and David Durham. "K-cipher: A low latency, bit length parameterizable 
cipher." In 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1-7. IEEE, 2020.
[3] Mahzoun, Mohammad, Liliya Kraleva, Raluca Posteuca, and Tomer Ashur. "Differential Cryptanalysis of K-Cipher." In 2022 IEEE 
Symposium on Computers and Communications (ISCC), pp. 1-7. IEEE, 2022.

• 当前标准密码算法通常是面向通用场景设计，硬件实现时延性能不够理想：NIST标准加密算法AES
使用8-bit的S-盒设计作为非线性运算，会引入较大的时延。SM4的S盒设计存在类似的问题。AES
被应用在内存加密时，在数据读写阶段性能会慢5~9倍[1]。

• 低时延密码算法类型需要扩展：当前低时延密码算法中（可调）分组密码分组长度主要是64/128-
bit，缺乏分组为256-bit的算法。(Intel 的K-Cipher[2]可以支持灵活的分组长度，但最近安全性分
析受到挑战[3]）。此外，目前仍缺乏专门设计的低时延认证加密算法。

设计新的低时延认证加密算法
应用场景：对于512/1024-bit cache line的加密和完整性保护，单次数据读写带宽为128-bit（对
应512-bit cache line）或256-bit（对应1024-bit cache line）
安全要求：
• IV/Nonce重用的情况下仍具有认证安全性（不要求额外的空间存储IV）
• 加密安全性: 128-bit 及以上；
• 完整性保护安全性：支持32-bit 及 64-bit 两种，可选支持更高
时延要求：
• 每128/256-bit（对应512/1024-bit cache line），加解密时延 2~3 Cycle @ 3GHz 

当前结果

技术背景
云计算场景中，远程用户无法物理接触云端设备，需要
保障用户数据运行时安全，防御可能的内存物理攻击

被动物理攻击
（Cold Boot, Snoop攻击）

主动物理攻击
（重放攻击、BRBC攻击）

云端服务器

解决方案：使用内存加密防御对云上设备物理攻击

业界现有的内存加密方案，主要是基于标准的密码算法，
如AES及其各种工作模式：
• Intel SGX：AES-CTR + 基于Carter-Wegman MAC的

Merkle Tree，用于小规模内存加密和完整性保护
• Intel TDX: AES-XTS + SHA3-MAC，用于大规模（虚拟机级

别）内存加密与完整性保护
• AMD SEV-SNP:  AES-GCM，用于保护客户消息（Guest 

Message）的机密性与完整性
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难题5：大规模AI模型安全验证关键技术

技术挑战

• 在图像分类领域，部分可验证鲁棒性的模型参数到达百万级； 在目
标检测领域，尚未有相关的工作成果

• 可验证鲁棒性：通过有效的鲁棒性训练对AI模型实施强化， 在
ImageNet数据集上，smoothed DNN在扰动半径（ L2范数）为2
的条件下，可验证准确率不超过40%

技术背景

• 如何将AI模型的计算过程转换为可验证、可扩展的表达式，提升大
规模模型静态验证的效率和可验证边界，对攻击形式化分析和刻画，
并证明模型有效防御对抗攻击

• 如何引入形式化验证方法来对实现对模型的设计和训练，实现模型
针对攻击的可验证鲁棒性

问题：AI技术能够极大的提升各行业效率，然而AI的安全风险影响着其
在关键业务中的广泛部署。其中最主要风险是AI的对抗攻击，即攻击者
能够对AI模型输入进行少量扰动就能控制其输出。目前业界通过经验方
法来测试业务模型对某些已知攻击的抵抗能力，这些经验方法存在局限
性，它们既无法验证未知攻击，也无法覆盖已知攻击的全部扰动，难以
全面保证安全性，因此，通过AI模型安全验证提供可证明安全是当前重
要问题。

技术诉求

• 验证效率、模型参数规模和可验证半径的大幅提升：
实现AI模型安全性验证的效率、规模和可验证边界的大幅提升

• 验证领域突破：
实现目标检测和人脸识别等模型的鲁棒性验证的突破

• 整体验证框架：
构建并完善AI系统验证框架，包含AI系统各关键要素的整体验证，
增强AI系统安全评估的理论基础，保证实际应用中的系统抗攻击的
能力

当前结果

• 关键业务需要对AI模型安全进行严格要求，对模型的可证明安全验证
能够消除业务中一个重要的不可控因素，是保障系统安全的重要手段；

• 然而AI模型规模越来越大且与环境之间有大量交互，存在状态空间爆
炸问题，验证属于NP困难问题；

• 深度学习AI系统的不可解释性与形式化的可证明性存在矛盾

参考文献：
[1] Algorithms for Verifying Deep Neural Networks. arxiv.1903.06758
[2] The Second International Verification of Neural Networks Competition 
(VNN-COMP 2021): Summary and Results. arxiv.2109.00498
[3] SoK: Certified Robustness for Deep Neural Networks. SP2023
[4] Principles for Verified Artificial Intelligence, DAC2017

出题组织：可信理论、技术与工程实验室         接口专家：Fang Chengfang (fang.chengfang@huawei.com)
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